70 research outputs found

    Solving Geometric Constraints by Homotopy

    No full text
    International audienceNumerous methods have been proposed in order to solve geometric constraints, all of them having their own advantages and drawbacks. In this article, we propose an enhancement of the classical numerical methods, which are, up to now the only ones that apply to the general case

    Robustness and Randomness

    Get PDF
    Robustness problems of computational geometry algorithms is a topic that has been subject to intensive research efforts from both computer science and mathematics communities. Robustness problems are caused by the lack of precision in computations involving floating-point instead of real numbers. This paper reviews methods dealing with robustness and inaccuracy problems. It discussed approaches based on exact arithmetic, interval arithmetic and probabilistic methods. The paper investigates the possibility to use randomness at certain levels of reasoning to make geometric constructions more robust

    Re-parameterization reduces irreducible geometric constraint systems

    No full text
    International audienceYou recklessly told your boss that solving a non-linear system of size n (n unknowns and n equations) requires a time proportional to n, as you were not very attentive during algorithmic complexity lectures. So now, you have only one night to solve a problem of big size (e.g., 1000 equations/unknowns), otherwise you will be fired in the next morning. The system is well-constrained and structurally irreducible: it does not contain any strictly smaller well-constrained subsystems. Its size is big, so the Newton–Raphson method is too slow and impractical. The most frustrating thing is that if you knew the values of a small number k<<n of key unknowns, then the system would be reducible to small square subsystems and easily solved. You wonder if it would be possible to exploit this reducibility, even without knowing the values of these few key unknowns. This article shows that it is indeed possible. This is done at the lowest level, at the linear algebra routines level, so that numerous solvers (Newton–Raphson, homotopy, and also p-adic methods relying on Hensel lifting) widely involved in geometric constraint solving and CAD applications can benefit from this decomposition with minor modifications. For instance, with k<<n key unknowns, the cost of a Newton iteration becomes O(kn^2) instead of O(n^3). Several experiments showing a significant performance gain of our re-parameterization technique are reported in this paper to consolidate our theoretical findings and to motivate its practical usage for bigger systems

    Segmentation of 3D pore space from CT images using curvilinear skeleton: application to numerical simulation of microbial decomposition

    Full text link
    Recent advances in 3D X-ray Computed Tomographic (CT) sensors have stimulated research efforts to unveil the extremely complex micro-scale processes that control the activity of soil microorganisms. Voxel-based description (up to hundreds millions voxels) of the pore space can be extracted, from grey level 3D CT scanner images, by means of simple image processing tools. Classical methods for numerical simulation of biological dynamics using mesh of voxels, such as Lattice Boltzmann Model (LBM), are too much time consuming. Thus, the use of more compact and reliable geometrical representations of pore space can drastically decrease the computational cost of the simulations. Several recent works propose basic analytic volume primitives (e.g. spheres, generalized cylinders, ellipsoids) to define a piece-wise approximation of pore space for numerical simulation of draining, diffusion and microbial decomposition. Such approaches work well but the drawback is that it generates approximation errors. In the present work, we study another alternative where pore space is described by means of geometrically relevant connected subsets of voxels (regions) computed from the curvilinear skeleton. Indeed, many works use the curvilinear skeleton (3D medial axis) for analyzing and partitioning 3D shapes within various domains (medicine, material sciences, petroleum engineering, etc.) but only a few ones in soil sciences. Within the context of soil sciences, most studies dealing with 3D medial axis focus on the determination of pore throats. Here, we segment pore space using curvilinear skeleton in order to achieve numerical simulation of microbial decomposition (including diffusion processes). We validate simulation outputs by comparison with other methods using different pore space geometrical representations (balls, voxels).Comment: preprint, submitted to Computers & Geosciences 202

    Towards a better integration of modelers and black box constraint solvers within the Product Design Process

    Get PDF
    This paper presents a new way of interaction between modelers and solvers to support the Product Development Process (PDP). The proposed approach extends the functionalities and the power of the solvers by taking into account procedural constraints. A procedural constraint requires calling a procedure or a function of the modeler. This procedure performs a series of actions and geometric computations in a certain order. The modeler calls the solver for solving a main problem, the solver calls the modeler’s procedures, and similarly procedures of the modeler can call the solver for solving sub-problems. The features, specificities, advantages and drawbacks of the proposed approach are presented and discussed. Several examples are also provided to illustrate this approach

    Variational geometric modeling with black box constraints and DAGs

    Get PDF
    CAD modelers enable designers to construct complex 3D shapes with high-level B-Rep operators. This avoids the burden of low level geometric manipulations. However a gap still exists between the shape that the designers have in mind and the way they have to decompose it into a sequence of modeling steps. To bridge this gap, Variational Modeling enables designers to specify constraints the shape must respect. The constraints are converted into an explicit system of mathematical equations (potentially with some inequalities) which the modeler numerically solves. However, most of available programs are 2D sketchers, basically because in higher dimension some constraints may have complex mathematical expressions. This paper introduces a new approach to sketch constrained 3D shapes. The main idea is to replace explicit systems of mathematical equations with (mainly) Computer Graphics routines considered as Black Box Constraints. The obvious difficulty is that the arguments of all routines must have known numerical values. The paper shows how to solve this issue, i.e., how to solve and optimize without equations. The feasibility and promises of this approach are illustrated with the developed DECO (Deformation by Constraints) prototype.The authors would like to thank the two French Institutes Carnot ARTS and Carnot STAR for their support to this research project. Lincong Fang thanks for their support the National Natural Science Foundation of China (No. 61272300), the Zhejiang Provincial Natural Science Foundation of China (LQ13F020003) and the China Scholarship Council

    Les representations par les frontieres : quelques constructions, difficultes rencontrees

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Les représentations par les frontières: quelques constructions ; difficultés rencontrées

    Get PDF
    Cette thèse traite de la construction de quelques représentations par les frontières, ou BREP (pour "Boundary REPresentation"), et des difficultés rencontrées. Aussi cette introduction rappelle-t-elle très brièvement ce que sont les BREP; on se reportera à [PERO 87] pour un exposé plus détaillé et pour d'autres références. La synthèse d'images et la CAO utilisent diverses modélisations des solides pour les visualiser et calculer leurs propriétés géométriques et mécaniques : masse, aire de l'enveloppe, centre de gravité, axes principaux d'inertie, etc. Plusieurs modèles informatiques des solides ont été proposés :No abstrac
    • …
    corecore